

Getting Started with MATLAB

Hans-Petter Halvorsen

What is MATLAB?

- MATLAB is a tool for technical computing, computation and visualization in an integrated environment.
- MATLAB is an abbreviation for MATrix LABoratory
- It is well suited for Matrix manipulation and problem solving related to Linear Algebra, Modelling, Simulation and Control Applications
- Popular in Universities, Teaching and Research

MATLAB Syntax - Example

Topics

- 1. The MATLAB Environment (IDE)
- 2. MATLAB Basics
- 3. Vectors and Matrices
- 4. Plotting
- 5. Scripts (m-files)
- 6. User-defined Functions

MATLAB IDE

Hans-Petter Halvorsen

The MATLAB Environment (IDE)

Hans-Petter Halvorsen

Command Window

The Command Window is the main window in MATLAB. Use the Command Window to enter variables and to run functions and M-files scripts (more about m-files later). Its like an advanced calculator!

MATLAB is **case sensitive**! The variables *x* and *X* are not the same.

Unlike many other languages, where the semicolon is used to terminate commands, in MATLAB the semicolon serves to suppress the output of the line that it concludes.

The "clear" command deletes all existing variables" from the memory

The "clc" command removes everything from the Command Window clc – Clear Command Window

Only clear the variable "x"

Built-in constants:

Name	Description
i, j	Used for complex numbers, e.g., $z=2+4i$
pi	Π
inf	∞, Infinity
NaN	Not A Number. If you, e.g., divide by zero, you get NaN

Solutions:

MATLAB Basics

Name	Description
i, j	Used for complex numbers, e.g., $z=2+4i$
pi	П
inf	∞, Infinity
NaN	Not A Number. If you, e.g., divide by zero, you get NaN

>> r=5; >> A=pi*r^2 A = 78.5398

Mathematical Expressions

Examples:

$$y(x) = \frac{3x+2}{2}$$

$$z = 3x^2 + \sqrt{x^2 + y^2} + e^{\ln(x)}$$

Mathematical Expressions

Solutions:

$$y(x) = \frac{3x+2}{2}$$
 $y(2) =?$

Solutions: Mathematical Expressions

$$z = 3x^2 + \sqrt{x^2 + y^2} + e^{\ln(x)}$$

We will use MATLAB in order to find the surface area (A) of a cylinder based on the height (h) and the radius (r) of the cylinder

Vectors and Matrices in MATLAB

Hans-Petter Halvorsen

Vectors & Matrices

- Matrices and vectors (Linear Algebra) are the basic elements in MATLAB and also the basic elements in control design theory, etc.

Examples of different Rows and Columns vectors

Given the following Rain Data for a given Week (Monday to Sunday):

Day	Rain Amount	
Monday	2,1	mm
Tuesday	10	mm
Wednesday	9,7	mm
Thursday	6,2	mm
Friday	2,5	mm
Saturday	0	mm
Sunday	8,3	mm

Given the following Rain Data for a given Week (Monday to Sunday):

Day	Rain Amount
Monday	2,1 mm
Tuesday	10 mm
Wednesday	9,7 mm
Thursday	6,2 mm
Friday	2,5 mm
Saturday	0 mm
Sunday	8,3 mm

We define the Data in MATLAB like this:

>> x = [2.1, 10, 9.7, 6.2, 2.5, 0, 8.5]

If we are only interested in the Rain Amount on Monday:

>> x(1) ans = 2.1000

Rain Amount on Friday:

>> x(5)ans = 2.5000

Given the following Rain Data for a given Week (Monday to Sunday):

Day	Rain	Amou	int
Monday		2,1	mm
Tuesday		10	mm
Wednesday		9,7	mm
Thursday		6,2	mm
Friday		2,5	mm
Saturday		0	mm
Sunday		8,3	mm

We define the Data in MATLAB like this:

>>
$$x = [2.1, 10, 9.7, 6.2, 2.5, 0, 8.5]$$

What is the Average Rain Amount this Week?

In MATLAB we can use the "mean" function:

>> mean(x)

ans = 5.5714

We can define a variable, e.g.:

>> mean_value_week = mean(x)
mean_value_week = 5.5714

Given the following function:

 $y(x) = 2x^2 + 3x + 1$ where: $-10 \le x \le 10$ >> x = -10:10Note how we have used .* and .^ >> y=2.*x.^2 + 3.*x + 1 .* each element-wise V =Multiplication 171 136 105 78 .^ each element-wise Power 3 55 36 21 10 0 1 6 15 28 What is y(3) = ?45 66 91 120 153 >> y(14) 190 231 ans = 28

We can also do like this:

>> x = 3; >> y = 2*x^2 + 3*x + 1 y = 28

Index	x	у(х)
1	-10	171
2	-9	136
3	-8	105
4	-7	78
5	-6	55
6	-5	36
7	-4	21
8	-3	10
9	-2	3
10	-1	0
11	0	1
12	1	6
13	2	15
14	3	28
15	4	45
16	5	66
17	6	91
18	7	120
19	8	153
20	9	190
21	10	231

Matrices

 $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

>> A	=	[1	2;	3	4]
A =	1 3		2 4		

$$B = \begin{bmatrix} 4 & 3 & 0 \\ 1 & -7 & 2 \\ 8 & 1 & 0 \end{bmatrix}$$

or:

>> A	=	[1,	2;	3,	4]
A =	1 3		2 4		

>>	B+C	
>>	B-C	
>>	B/C	
>>	B*C	
>>	B.*C	
>>	B'*C	

$$C = \begin{bmatrix} -1 & 3 & 0 \\ 4 & 7 & -2 \\ 2 & 0 & 9 \end{bmatrix}$$

Given the following matrices:

Matrices

 $n \begin{bmatrix} m \\ A \end{bmatrix} m \begin{bmatrix} p \\ B \end{bmatrix} = n \begin{bmatrix} p \\ C \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 3 & 0 \\ 1 & -2 & 2 \\ 3 & 1 & 0 \end{bmatrix}$$
$$B = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$

>>	A*B
>>	B*A
>>	A+B
>>	В'
>>	B'*C
>>	A*B'
>>	A'*B'
>>	A.*B
• • •	

//	4

. . .

>> A*(B*C)

>> (A*B)*C

>> (A+B) *C

>> A*C + C*B

>> (A+inv(B))*C

Plotting in MATLAB

Hans-Petter Halvorsen

>> plot(x,y,'r*', x,y2,'g+')

Plotting functions:

Name	Description
plot	Create a Plot
figure	Define a new Figure/Plot window
grid on/off	Create Grid lines in a plot
title	Add Title to current plot
xlabel	Add a Label on the x-axis
ylabel	Add a Label on the x-axis
axis	Set xmin, xmax, ymin, ymax
hold on/off	Add several plots in the same Figure
legend	Create a legend in the corner (or at a specified position) of the plot
subplot	Divide a Figure into several Subplots

>> x=0:0.1:2*pi; >> y=sin(x); >> plot(x,y) >> title('Plot Example') >> xlabel('x') >> ylabel('y=sin(x)') >> grid on >> axis([0,2*pi,-1,1]) >> legend('Temperature')

Given the following Rain Data for a given Week (Monday to Sunday):

Day	Rain Amount
Monday	2,1 mm
Tuesday	10 mm
Wednesday	9,7 mm
Thursday	6,2 mm
Friday	2,5 mm
Saturday	0 mm
Sunday	8,3 mm

We will plot these values

Solutions:

Plotting

Day	Rain Amount
Monday	2,1 mm
Tuesday	10 mm
Wednesday	9,7 mm
Thursday	6,2 mm
Friday	2,5 mm
Saturday	0 mm
Sunday	8,3 mm

x = [2.1, 10, 9.7, 6.2, 2.5, 0, 8.5] >> plot(x, 'o')

Given the following function ($-10 \le x \le 10$):

$$f(x) = 2x^2 + 3x + 1$$

We will:

- Plot this function
- Use the Plot to find out:
 - For which value of x is f(x) = 0?
 - What is f(5) = ?

Subplots

>> x=0:0.1:2*pi;
>> y=sin(x);
>> y2=cos(x);

>> subplot(2,1,1)
>> plot(x,y)

```
>> subplot(2,1,2)
>> plot(x,y2)
```


Figure 1

 File
 Edit
 View
 Insert
 Tools
 Desktop
 Window
 Help

 ¹
 ²
 ²

00

-0.5

- >> x=0:0.1:2*pi; >> y=sin(x); >> y2=cos(x); >> y3=tan(x); >> subplot(3,1,1) >> plot(x,y) >> subplot(3,1,2) >> plot(x,y2)
- >> subplot(3,1,3)
 >> plot(x,y3)
- >> x=0:0.1:2*pi;
- >> y=sin(x);
- >> y2=cos(x);
- >> y3=tan(x);
- >> y4=atan(x);
- >> subplot(2,2,1)
- >> plot(x,y)
- >> subplot(2,2,2)
- >> plot(x,y2)
- >> subplot(2,2,3)
 >> plot(x,y3)
- >> subplot(2,2,4)
 >> plot(x,y4)

Scripts and User-defined Functions in MATLAB

Hans-Petter Halvorsen

Scripts (m-files)

MATLAB Scripts are saved as so-called .m files (file extension is .m)

Script Editor

When using the Script Editor, you may create several lines of code and execute all in one batch. You can easily do changes in your code, create comments, etc.

User-defined Functions

User-defined Functions

Example: Convert from Celsius to Fahrenheit

$$T_F = \frac{9}{5}T_C + 32$$

We will create a User-defined Function that converts from Temperature in Celsius to Temperature in Fahrenheit

We can use the function like this in the Command Window:

Solutions: Convert from Celsius to Fahrenheit

User-defined Functions

clear
clc
t = 0:0.1:24;
Tc = (sin(t)+1)*20;
<pre>Tf = fahrenheit(Tc);</pre>
plot(t,Tc, t,Tf)
<pre>title('Temperature Simulation')</pre>
<pre>xlabel('t')</pre>
<pre>ylabel('Temperature')</pre>
grid on
axis([0,24, 0,120]);
<pre>legend('Celcius', 'Fahrenheit')</pre>

Hans-Petter Halvorsen, M.Sc.

University College of Southeast Norway www.usn.no

E-mail: <u>hans.p.halvorsen@hit.no</u> Blog: <u>http://home.hit.no/~hansha/</u>

